close
close

A systematic exploration of unexploited genes for oxidative stress in Parkinson’s disease

0

  • Rehm, H. L. et al. ClinGen — the clinical genome resource. N. Engl. J. Med. 372, 2235–2242 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sollis, E. et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Ochoa, D. et al. The next-generation open targets platform: reimagined, redesigned, rebuilt. Nucleic Acids Res. 51, D1353–D1359 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Tian, R. et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat. Neurosci. 24, 1020–1034 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghoussaini, M. et al. Open targets genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics. Nucleic Acids Res. 49, D1311–D1320 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Dhindsa, R. S. et al. Rare variant associations with plasma protein levels in the UK Biobank. Nature 622, 339–347 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karczewski, K. J. et al. Systematic single-variant and gene-based association testing of thousands of phenotypes in 394,841 UK Biobank exomes. Cell Genomics 2, 100168 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • The Europe PMC Consortium. Europe PMC: a full-text literature database for the life sciences and platform for innovation. Nucleic Acids Res. 43, D1042–D1048 (2015).

    Article 

    Google Scholar 

  • Kafkas, Ş., Dunham, I. & McEntyre, J. Literature evidence in open targets – a target validation platform. J. Biomed. Semant. 8, 20 (2017).

    Article 

    Google Scholar 

  • Piñero, J. et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Li, G. et al. miRTex: a text mining system for miRNA-gene relation extraction. PLOS Comput. Biol. 11, e1004391 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, J. et al. RNADisease v4.0: an updated resource of RNA-associated diseases, providing RNA-disease analysis, enrichment and prediction. Nucleic Acids Res. 51, D1397–D1404 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Li, Q., Kim, S., Zaslavsky, L., Cheng, T. & Yu, B. Resource description framework (RDF) modeling of named entity co-occurrences derived from biomedical literature in the PubChemRDF (2023).

  • Esaki, T. & Ikeda, K. Difficulties and prospects of data curation for ADME in silico modeling. CBIJ 23, 1–6 (2023).

    Article 

    Google Scholar 

  • Suzuki, T., Ono, Y. & Bono, H. Comparison of oxidative and hypoxic stress responsive genes from meta-analysis of public transcriptomes. Biomedicines 9, 1830 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bono, H. Meta-analysis of oxidative transcriptomes in insects. Antioxidants 10, 345 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dorsey, E. R. et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 17, 939–953 (2018).

    Article 

    Google Scholar 

  • Davie, C. A. A review of Parkinson’s disease. Br. Med. Bull. 86, 109–127 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Obeso, J. A. et al. Missing pieces in the Parkinson’s disease puzzle. Nat. Med 16, 653–661 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Wiecki, T. V. & Frank, M. J. Chapter 14 – Neurocomputational models of motor and cognitive deficits in Parkinson’s disease. In: Progress in Brain Research (eds. Björklund, A. & Cenci, M. A.) vol. 183, 275–297 (Elsevier, 2010).

  • Sahoo, S., Padhy, A. A., Kumari, V. & Mishra, P. Role of ubiquitin–proteasome and autophagy-lysosome pathways in α-synuclein aggregate clearance. Mol. Neurobiol. 59, 5379–5407 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Zhou, Z. D., Yi, L. X., Wang, D. Q., Lim, T. M. & Tan, E. K. Role of dopamine in the pathophysiology of Parkinson’s disease. Transl. Neurodegener. 12, 44 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramesh, S., Arachchige, A. S. P. M., Ramesh, S. & Arachchige, A. S. P. M. Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: a review of the literature. AIMSN 10, 200–231 (2023).

    Article 

    Google Scholar 

  • Dias, V., Junn, E. & Mouradian, M. M. The role of oxidative stress in Parkinson’s disease. J. Parkinson’s Dis. 3, 461–491 (2013).

    Article 

    Google Scholar 

  • Klinkovskij, A., Shepelev, M., Isaakyan, Y., Aniskin, D. & Ulasov, I. Advances of genome editing with CRISPR/Cas9 in neurodegeneration: the right path towards therapy. Biomedicines 11, 3333 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simmnacher, K. et al. Unique signatures of stress-induced senescent human astrocytes. Exp. Neurol. 334, 113466 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Krauskopf, J. et al. Transcriptomics analysis of human iPSC-derived dopaminergic neurons reveals a novel model for sporadic Parkinson’s disease. Mol. Psychiatry 27, 4355–4367 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Tong, Z.-B., Braisted, J., Chu, P.-H. & Gerhold, D. The MT1G Gene in LUHMES neurons is a sensitive biomarker of neurotoxicity. Neurotox. Res. 38, 967–978 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • The irradiated brain microenvironment supports glioma stemness and survival via astrocyte-derived transglutaminase 2 | Cancer Research | American Association for Cancer Research. (2021).

  • Shimada, M., Tsukada, K., Kagawa, N. & Matsumoto, Y. Reprogramming and differentiation-dependent transcriptional alteration of DNA damage response and apoptosis genes in human induced pluripotent stem cells. J. Radiat. Res. 60, 719–728 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Loeliger, B. W. et al. Effect of ionizing radiation on transcriptome during neural differentiation of human embryonic stem cells. Rare 193, 460–470 (2020).

    Article 

    Google Scholar 

  • Murotomi, K. et al. Cyclo-glycylproline attenuates hydrogen peroxide-induced cellular damage mediated by the MDM2-p53 pathway in human neural stem cells. J. Cell. Physiol. 238, 434–446 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Crowe, E. P. et al. Changes in the transcriptome of human astrocytes accompanying oxidative stress-induced senescence. Front. Aging Neurosci. 8, 208 (2016).

  • Suzuki, T. A systematic exploration of unexploited disease-related genes. (2024).

  • Barrett, T. et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 41, D991–D995 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Mariani, E. et al. Meta-analysis of Parkinson’s disease transcriptome data using TRAM software: whole substantia nigra tissue and single dopamine neuron differential gene expression. PLoS One 11, e0161567 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phung, D. M. et al. Meta-analysis of differentially expressed genes in the substantia nigra in Parkinson’s disease supports phenotype-specific transcriptome changes. Front. Neurosci. 14, (2020).

  • Cappelletti, C. et al. Transcriptomic profiling of Parkinson’s disease brains reveals disease stage specific gene expression changes. Acta Neuropathol. 146, 227–244 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, M. et al. TWAS Atlas: a curated knowledgebase of transcriptome-wide association studies. Nucleic Acids Res. 51, D1179–D1187 (2023).

    Article 
    PubMed 

    Google Scholar 

  • szktkyk. szktkyk/gene-disease-linker (2024).

  • Index of /gene/DATA. https://ftp.ncbi.nlm.nih.gov/gene/DATA/.

  • Kia, D. A. et al. Identification of candidate Parkinson disease genes by integrating genome-wide association study, expression, and epigenetic data sets. JAMA Neurol. 78, 464–472 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Li, Y. I., Wong, G., Humphrey, J. & Raj, T. Prioritizing Parkinson’s disease genes using population-scale transcriptomic data. Nat. Commun. 10, 994 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, L. et al. Study of molecular patterns associated with ferroptosis in Parkinson’s disease and its immune signature. PLoS One 18, e0295699 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chung, S.-K. & Lee, S.-Y. Advances in gene therapy techniques to treat LRRK2 gene mutation. Biomolecules 12, 1814 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lei, J., Aimaier, G., Aisha, Z., Zhang, Y. & Ma, J. eEF1A1 regulates the expression and alternative splicing of genes associated with Parkinson’s disease in U251 cells. Genes Genom. 46, 817–829 (2024).

  • Zhang, X., Hu, D., Shang, Y. & Qi, X. Using induced pluripotent stem cell neuronal models to study neurodegenerative diseases. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165431 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Liu, J. et al. NUPR1 is a critical repressor of ferroptosis. Nat. Commun. 12, 647 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. UHRF2 regulates cell cycle, epigenetics and gene expression to control the timing of retinal progenitor and ganglion cell differentiation. Development 149, dev195644 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bucher, M. L. et al. Acquired dysregulation of dopamine homeostasis reproduces features of Parkinson’s disease. npj Parkinsons Dis. 6, 1–13 (2020).

    Article 

    Google Scholar 

  • Choi, W.-S., Kim, H.-W. & Xia, Z. JNK inhibition of VMAT2 contributes to rotenone-induced oxidative stress and dopamine neuron death. Toxicology 328, 75–81 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Su, C.-J. et al. Thioredoxin-interacting protein induced α-synuclein accumulation via inhibition of autophagic flux: Implications for Parkinson’s disease. CNS Neurosci. Ther. 23, 717–723 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, D. et al. Neurofilament light chain as a mediator between LRRK2 mutation and dementia in Parkinson’s disease. npj Parkinsons Dis. 9, 1–6 (2023).

    Article 

    Google Scholar 

  • Gong, L. et al. Neurofilament light chain (NF-L) stimulates lipid peroxidation to neuronal membrane through microglia-derived ferritin heavy chain (FTH) secretion. Oxid. Med. Cell. Longev. 2022, e3938940 (2022).

    Article 

    Google Scholar 

  • Gellhaar, S., Sunnemark, D., Eriksson, H., Olson, L. & Galter, D. Myeloperoxidase-immunoreactive cells are significantly increased in brain areas affected by neurodegeneration in Parkinson’s and Alzheimer’s disease. Cell Tissue Res. 369, 445–454 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maki, R. A. et al. Human myeloperoxidase (hMPO) is expressed in neurons in the substantia nigra in Parkinson’s disease and in the hMPO-α-synuclein-A53T mouse model, correlating with increased nitration and aggregation of α-synuclein and exacerbation of motor impairment. Free Radic. Biol. Med. 141, 115–140 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verdiperstat | ALZFORUM https://www.alzforum.org/therapeutics/verdiperstat.

  • Chang, C. Y., Choi, D.-K., Lee, D. K., Hong, Y. J. & Park, E. J. Resveratrol confers protection against rotenone-induced neurotoxicity by modulating myeloperoxidase levels in glial cells. PLoS One 8, e60654 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, J. et al. LINC00938 alleviates hypoxia ischemia encephalopathy induced neonatal brain injury by regulating oxidative stress and inhibiting JNK/p38 MAPK signaling pathway. Exp. Neurol. 367, 114449 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Yousefi, M., Peymani, M., Ghaedi, K., Irani, S. & Etemadifar, M. Significant modulations of linc001128 and linc0938 with miR-24-3p and miR-30c-5p in Parkinson disease. Sci. Rep. 12, 2569 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, C., Fang, J. & Liu, W. Superoxide dismutase coding of gene polymorphisms associated with susceptibility to Parkinson’s disease. J. Integr. Neurosci. 18, 299–303 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Yu, H. et al. yyoshiaki/ikra: ikra v2.0.1. Zenodo (2021).

  • The NCBI SRA (Sequence Read Archive); NCBI—National Center for Biotechnology Information/NLM/NIH: Bethesda, MD, USA, 2021.

  • Babraham Bioinformatics – Trim Galore! https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/.

  • Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar